HHS Public Access Author manuscript J Public Health Manag Pract. Author manuscript; available in PMC 2016 February 18. Published in final edited form as: J Public Health Manag Pract. 2013; 19(3 0 1): S97-S104. doi:10.1097/PHH.0b013e3182841435. # Policy perceptions related to physical activity and healthy eating in Mississippi Rachel G. Tabak, PhD^[1], Ellen Jones, PhD^[2], Julie A. Jacobs, MPH^[1], Thomas Dobbs, MD, MPH^[3], Victor Sutton, PhD^[4], Cassandra Dove, MPH^[4], and Ross C. Brownson, PhD^{[1],[5]} [1] Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, St. Louis, MO ^[2]School of Health Related Professions, University of Mississippi Medical Center, Jackson, MS, USA [3]State Epidemiologist, Mississippi State Department of Health, Jackson, MS, USA [4]Office of Preventive Health, Mississippi State Department of Health, Jackson, MS, USA ^[5]Division of Public Health Sciences and Alvin J. Siteman Cancer Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO # **Abstract** **Objective**—Determine the public perceptions about policies related to physical activity and healthy eating to inform efforts to change policy for these important public health issues **Design**—Cross sectional, structured phone interview survey **Setting**—10 counties in Mississippi (5 counties with the highest and 5 with the lowest obesity prevalence) Participants—Random sample of 2,800 adults **Main Outcome Measure**—Level of support for each individual policy and summary of support for ten policies related to healthy eating and activity and four related to local funding for infrastructure for physical activity **Results**—This survey showed strong policy support among Mississippi residents for a diverse set of policies aimed at promoting healthy eating and physical activity behaviors. This was particularly true for those in counties with the highest levels of obesity. Support for policies related to healthy eating and activity was highest for: Requiring at least 30 minutes of physical activity or physical education everyday for children in kindergarten through 12th grade (93%) and lowest for: Taxing soda and soft drinks and using the money for public education campaigns to fight obesity in children (65%). Support for the use of local government funds to build and maintain infrastructure for physical activity was high across all categories, ranging from 86% (recreation centers) to 74% (swimming pools). The levels of support for each policy, varied according to several demographic characteristics; in general, support for nearly every policy was greater among African Americans, females, and those in counties with higher levels of obesity. Logistic models predicting level of support for healthy eating and physical activity found significant associations with several demographic factors. ### Keywords Nutrition policy; physical activity policy; public perception; obesity prevention # Introduction Obesity is a major public health threat in the US.¹ It is linked to many chronic diseases including diabetes, coronary heart disease, stroke, hypertension, and certain types of cancer, and is expected to account for \$147 billion in annual costs.² According to the Centers for Disease Control and Prevention (CDC), 34.9% of all Mississippians are classified as obese; the single highest obesity rate in the nation.^{3,4} Obesity is caused by various factors including unhealthy eating⁵ and inactivity behaviors⁶; these behaviors can be influenced by characteristics of the environment (e.g., aesthetics of a neighborhood, grocery store access).^{7,8,9} Laws, regulations, and guidelines as public health policy can profoundly impact health behavior and status. ¹⁰ Numerous policy interventions have been identified as effective in promoting physical activity, healthy eating, and obesity prevention. ^{11–22} In addition to nationally implemented policies, mounting evidence shows that implementation at the local level is critical to achieving changes in risk factors and health outcomes. ^{10,23–25} A 2009 IOM report describes the importance of local government action in obesity prevention and lays out policy recommendations likely to directly affect children. ²⁴ When making decisions about supporting an issue, policymakers often prioritize constituents' needs or opinions above other factors. ²⁶ Further, the IOM report, *Preventing* Childhood Obesity: Health in the Balance²⁷, emphasized that policy changes occur more quickly "when there is strong social consensus behind them." 28,29 It is therefore important to provide timely data showing public support of evidence-based approaches. Obtaining information on public health topics, however, requires a large and diverse sample of respondents to provide such information. Most public health data collection assesses factors such as health status, socioeconomic, and demographic data, but misses the information that may be of particular importance to influence policymaker priorities. There is a lack of public opinion data, particularly at the state and local levels, to help local-level decision makers tailor policies that would most efficiently and effectively impact obesity rates. The lack of data available to advocates also hampers efforts to communicate constituent concerns to policymakers. Peer reviewed studies reporting on such perceptions are needed to help shape such communication efforts. Putting these studies through peer review and making them available in the scientific literature (not just the popular press literature) enhances the opportunity for researchers and policymakers to make use of these findings. This work aims to fill that gap by reporting the opinions of a random sample of residents from 10 counties in Mississippi. # **Methods** The overall goal of this study was to determine the public support for policies related to nutrition and physical activity through administration of a phone survey in 10 counties in Mississippi. The study protocol has been reviewed and approved by the Washington University Institutional Review Board. # Survey methods Telephone interviews with adult respondents were conducted using a random sample of 75% landline and 25% cell-phone numbers from residents living in the following 10 counties in Mississippi: Holmes, Humphreys, Jefferson, Tunica, Wilkinson, Harrison, Hancock, Rankin, Tishomingo, and Prentiss. The first 5 counties represent those with the highest adult obesity prevalence in the state and the last 5 counties represent those with the lowest adult obesity prevalence based on County Health Rankings. The County Health Rankings are published on-line at www.countyhealthrankings.org by the University of Wisconsin Population Health Institute and the Robert Wood Johnson Foundation (RWJF). The Rankings assess the overall health of nearly every county in all 50 states, using a standard way to measure how healthy people are and how long they live. ³⁰ At the time the study was designed, these rankings were based on CDC data from 2006–2008.³¹ The data were collected from May through September 2011 by the Survey Research Laboratory, Social Science Research Center at Mississippi State University. The household telephone numbers were selected using random-digit-dialing (RDD) sampling procedures. The sample included households with unlisted numbers. Quotas for the total number of completed surveys to be obtained from each county were pre-determined according to county population size. Within-household random sampling was conducted by asking to speak with a household member who is at least 18 years of age and ... [randomly] ... "will be having the next birthday" [or] ... "has had the last birthday". Telephone numbers were dialed a maximum of eight times before being retired. Calls were placed throughout Mondays-Fridays from 5pm-9pm, Saturdays from 10am-6pm, and Sundays from 1pm-9pm, without randomization for when the calls were placed. A total of 81,000 telephone numbers were purchased; 36,182 were never used and 21,138 were not home or were not working phone numbers. Of the remaining 24,480 numbers (which includes answering machines and busy signals as well as ineligibilities and refusals) 2,800 individuals responded (response rate 11%). #### **Questionnaire items** A series of 10 questions used a four-point scale to assess how strongly respondents would "favor or oppose" new laws or policies (referred to as: 'healthy eating and activity policies'). An additional 4 questions asked whether respondents would support the use of local government funds to build and maintain 1) walking trails, 2) swimming pools, 3) recreation centers, and 4) bicycle paths (referred to as: "local funding"). The instrument is available for download as supplementary material. # Statistical analysis Support for each policy was examined on a univariate basis, then stratified by a number of demographic characteristics (i.e. age, race, marital status, education, income, presence of children in the home, gender, high/low obesity county, BMI). The Mantel-Haenszel chisquare values across levels of these characteristics were determined. Summary scores were computed by summing the responses to these questions for a possible score of 10 to 40 for support of healthy eating and activity policies (where 10 is strongly supporting each policy and 40 is strongly opposing all) and 4 to 8 for local funding policies (where 4 is answering 'yes' to each policy and 8 is answering 'no' to all). These scores were dichotomized to distinguish those supporting and those opposing policies (10–24 versus 25–40 for healthy eating and activity policies and 4–5 versus 6–8 for local funding policies). Logistic regression models were used to explore the association between supporting/opposing the policies and demographic characteristics (i.e. gender, race/ethnicity, age, income, presence of children in the home, level of obesity in the county, individual weight status, and education). These models were run a second time with adjustment for all other demographic characteristics. # Results The final sample contained 2,800 individuals, roughly half (1,401) of whom were from the five counties with the lowest obesity rates in Mississippi. The sample was 71% female (2,000). Fifty-one percent of the sample (1,432) was white, 45% (1,263) were Black or African American, and nearly 4% (105) were some other race. Additional demographic characteristics of the sample can be found in Table 1, with additional demographic information on supplemental Table 1. Among the total sample, support for healthy eating and activity policies was highest for: Requiring at least 30 minutes of physical activity or physical education classes every day for children in kindergarten through 12th grade (93%) and lowest for: Taxing soda and soft drinks and using the money for public education campaigns to fight obesity in children (65%). Support for local funding policies was highest for Recreation centers (86%) and lowest for Swimming pools (74%) (Table 2). The levels of support for each policy, stratified by race, obesity level of the county, and gender, are shown in Table 2. Support for nearly every policy was greater among African Americans, females, and those living in counties with higher levels of obesity. In general, the trends across BMI, education, income, and age were not linear (data not shown), in that support did not increase or decrease consistently across categories. For the sum of all 10 healthy eating and activity policies, summary scores ranged from 10 to 40, with a mean of 17.1 (SD=6.0) and for local funding the sum of the four items ranged from 4 to 8, with a mean of 4.7 (SD=1.3). Females were significantly more likely than males to support both types of policies (OR= 1.69, 95% CI: 1.28–2.24 and OR=1.30, 95% CI: 1.06–1.60) (Table 3). When this model was adjusted for all demographic factors listed in the methods, the association was no longer significant for the healthy eating and activity policies (adjusted OR=1.42, 95% CI: 0.98–2.06) but remained borderline significant for the local funding policies (adjusted OR=1.39, 95% CI: 1.04–1.85). Compared to Caucasians, Blacks/African Americans were significantly more likely to support both healthy eating and activity policies (adjusted OR=4.18, 95% CI: 2.48–7.05) and local funding policies (adjusted OR=2.84, 95% CI: 1.95–4.15). Age was associated with support for local funding for all age categories compared to those 65 years and over, but this was significant after adjustment only for the age groups 25–34yrs; 35–44yrs; and 45–54yrs. Those earning less than \$15,000 were more likely to support both types of policies than those earning at least \$75,000. However, the only association that was significant before and after adjustment was between those earning \$15,000-\$24,999 and those earning at least \$75,000 for supporting the healthy eating and activity policies (adjusted OR=2.32, 95% CI: 1.19–4.52). Before, but not after, adjustment, respondents living in the 5 counties with the highest levels of obesity were significantly more likely to support both types of policies than those in the counties with the lowest obesity prevalence. Respondents with at least one child in the home were significantly more likely to support policies related to local funding (OR=1.94, 95% CI: 1.53–2.44). Similarly, obese individuals were more likely to support policies related to local funding than those with a normal BMI between 18.5–24.9 kg/m². Neither of these associations was significant after adjustment. Only those in the lowest education category (less than high school) were significantly more likely than those with at least a college education to support healthy eating and activity policies; this association was no longer significant after adjustment. # **Discussion** Findings from this study indicate support among Mississippi residents for policies aimed at promoting healthy eating and activity in their communities, particularly among those living in counties with the highest levels of obesity. Other large-scale polls^{32–35} have shown similar levels of support. In late 2010, the California Endowment funded a poll of 1,005 registered voters³⁴ and found that levels of support for banning advertising were similar in Mississippi and California (66% and 64%, respectively). ³⁴ Public use of school facilities when school is not in session had 88% support in California³⁴ and 80% support in Mississippi. On the other hand, Mississippi residents had higher support for banning the sale of soda in school (70% strongly or somewhat supported) than those in New York State (59% support)³² (April 2010 Quinnipiac University RDD survey of 1,381 New York State registered voters). Similarly, 65% of Mississippi respondents expressed support for taxing soda and soft drinks to fund public education campaigns for childhood obesity while only 56% of respondents in the California survey supported this policy. ^{34,35} A slightly different version of this question (where the use of tax funds was not specified) was asked in a December 2009 Columbia Broadcasting System (CBS) poll, 33 which included a RDD sample of 1,048 adults nationwide; only 38% favored the policy. Finally, in the Ouinnipac University poll,³² which suggested the money raised from such taxes would be used to fund health care only, 48% supported the policy. Support among Mississippians has remained relatively constant for some policies since a 2006 poll by the Mississippi Center for Health Policy.³⁵ For example, support for requiring schools to send annual BMI scorecards to parents was 68% in 2011 and 66% in 2006; this was much higher than the national level of support (51%), at the time (2006). A 2006 survey found that support for eliminating vending machines in elementary schools was slightly greater in Mississippi³⁵ (78.5%) than the rest of the nation at that time (71%); in this 2011 survey, 74% of Mississippians supported the policy. It is often difficult for researchers to conduct polls assessing policy perceptions due to financial and methodological constraints. Funding and research study timelines are often out of synch with the need for information about timely issues.³⁶ The surveys mentioned above were not published as part of the scientific literature. In the case of these surveys, dissemination through popular, rather than scientific press, allows practitioners and policymakers the opportunity to use the knowledge gleaned from these investigations in a more timely fashion. While inclusion in the popular press is important, publication of these findings in the scientific literature aids in their use by researchers and policymakers. This type of publication allows for peer-review, which adds credibility, and allows them to be searchable in databases such as Pubmed. Many of the trends across demographic characteristics seen in the Mississippi population were also seen in similar surveys conducted elsewhere. In Mississippi, support for taxing soda and soft drinks had greater support among African Americans (76%) than Caucasians or any other race (55% and 61%, respectively). Similarly, in California,³⁴ the highest support was among African Americans and Latino/Hispanics (70% and 72%, respectively) compared to 50% and 53% for Caucasian non-Hispanics and Asian-American/others. Findings from this Mississippi study have a number of research and policy implications. This study identified several characteristics as being related to policy support. Future research efforts should investigate the use of such components to target social marketing campaigns, such as those aimed at building support for policy change. A recent IOM report, *Accelerating Progress in Obesity Prevention: Solving the Weight of the Nation*, ³⁷ recommends social marketing as a method of changing public opinion. An essential piece of this method, is that these campaigns be highly targeted (in terms of audience and behavior). ³⁸ In addition to the research implications, this study has the potential to inform policy. Policymakers rely heavily on constituent needs and opinions in making crucial policy decisions. ²⁶ Practitioners can use this information to tailor communication about public health interventions, including policy approaches. Local health leaders can determine priorities for education and awareness. In addition, this information, showing clear support for policies encouraging healthy eating and physical activity, can be powerful in the hands of advocates working with policymakers to achieve change. ²⁶ An important use for these findings is to provide those looking to achieve policy change with information regarding population subgroups most likely to support (and those most likely to oppose) policy changes related to healthy eating and physical activity. This study found that African Americans and females were more likely to support healthy eating and activity policies and local funding policies. Similarly, those in younger age groups were more likely to support local funding than those in the oldest age group. These are individuals who may need to be specifically targeted, perhaps with different messages, in order to change their perception. Study limitations include a cross-sectional design, which limits causal inferences. Secondly, though the study was designed to be representative of the counties sampled (the five with the highest and five with the lowest obesity levels in Mississippi), it is not representative of state or national samples, which may limit generalizability. The response rate for the sample was low, however the individuals were sampled for variability (by selecting those in the counties with the highest and lowest levels of obesity), and the aim was not to try to estimate areawide prevalence. Third, related to sampling, we had a low response rate and though an attempt was used to survey by cell-phone as well as landline, there may have been bias in those choosing to participate in the survey. These results paint a picture of the perceptions of residents concerning public health policies related to healthy eating and physical activity. Though patterns were found by demographics such as race and gender, overall support was quite high for all policies. In practice, individuals and groups that support such policies should be recruited as advocates. Those opposing the policies may be targeted with messages aimed at reducing their resistance. These findings can help move public opinion, a key driver of policy change. # Supplementary Material Refer to Web version on PubMed Central for supplementary material. # **Acknowledgments** Disclosure of funding: This work was funded through the Centers for Disease Control and Prevention grant #5R18DP001139-02 (Improving Public Health Practice through Translation Research), the Centers for Disease Control and Prevention's Prevention Research Centers Program contract U48/DP001903, and the Centers for Disease Control and Prevention Cooperative Agreement Number U48/DP001903 from the CDC, Prevention Research Centers Program, Special Interest Project 9-09, and the Physical Activity Policy Research Network. # References - 1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. Feb 1; 2012 307(5):491–497. [PubMed: 22253363] - Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health Aff (Millwood). Sep-Oct;2009 28(5):w822–831. [PubMed: 19635784] - 3. Mississippi has highest obesity rate in the nation new analysis ranks states, finds 12 states top 30 percent for obesity. Aug 13. 2012 http://healthyamericans.org/newsroom/releases/?releaseid=271 - 4. [Accessed August 24, 2012, 2012] Adult Obesity Facts Obesity is common, serious and costly 2012. http://www.cdc.gov/obesity/data/adult.html - 5. Seagle HM, Strain GW, Makris A, Reeves RS. Position of the American Dietetic Association: weight management. J Am Diet Assoc. Feb; 2009 109(2):330–346. [PubMed: 19244669] - 6. Committee PAGA. Physical Activity Guidelines Advisory Committee Report, 2008. Washington, DC: U.S: Department of Health and Human Services; 2008. - 7. Chen SE, Florax RJ. Zoning for health: the obesity epidemic and opportunities for local policy intervention. J Nutr. Jun; 2010 140(6):1181–1184. [PubMed: 20392881] 8. Casey AA, Elliott M, Glanz K, et al. Impact of the food environment and physical activity environment on behaviors and weight status in rural U.S. communities. Prev Med. Dec; 2008 47(6): 600–604. [PubMed: 18976684] - 9. Centers for Disease Control and Prevention. Ten great public health achievements--United States, 1900–1999. MMWR Morb Mortal Wkly Rep. Apr 2; 1999 48(12):241–243. [PubMed: 10220250] - Brownson RC, Chriqui JF, Stamatakis KA. Understanding evidence-based public health policy. Am J Public Health. Sep; 2009 99(9):1576–1583. [PubMed: 19608941] - Anderson LM, Quinn TA, Glanz K, et al. The effectiveness of worksite nutrition and physical activity interventions for controlling employee overweight and obesity: a systematic review. Am J Prev Med. Oct; 2009 37(4):340–357. [PubMed: 19765507] - 12. Dobbins M, De Corby K, Robeson P, Husson H, Tirilis D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst Rev. 2009; (1):CD007651. [PubMed: 19160341] - 13. Heath GW, Brownson RC, Kruger J, et al. The effectiveness of urban design and land use and transport policies and practices to increase physical activity: a systematic review. J Physical Activity and Health. 2006; 3(Suppl 1):S55–S76. - 14. Birch, LL.; Parker, L.; Burns, A., editors. Institute of Medicine. Early Childhood Obesity Prevention Policies. Washington, DC: The National Academies Press; 2011. - 15. Kahn EB, Ramsey LT, Brownson RC, et al. The effectiveness of interventions to increase physical activity. A systematic review(1,2). Am J Prev Med. May; 2002 22(4 Suppl 1):73–107. [PubMed: 11985936] - 16. Katz DL. School-based interventions for health promotion and weight control: not just waiting on the world to change. Annu Rev Public Health. Apr 29.2009 30:253–272. [PubMed: 19705560] - Katz DL, O'Connell M, Njike VY, Yeh MC, Nawaz H. Strategies for the prevention and control of obesity in the school setting: systematic review and meta-analysis. Int J Obes (Lond). Dec; 2008 32(12):1780–1789. [PubMed: 19079319] - NICE. Physical activity and the environment: Review One: Transport. NICE Public Health Collaborating Centre - Physical activity. Sep 5.2006 2006 - NICE. Physical activity and the environment: Review Two: Urban Planning and Design. NICE Public Health Collaborating Centre - Physical activity. Oct 17.2006 2006 - NICE. Physical activity and the environment: Review Three: Natural Environment. NICE Public Health Collaborating Centre - Physical activity. Oct 10.2006 2006 - NICE. Physical activity and the environment: Review Four: Policy. NICE Public Health Collaborating Centre - Physical activity. Dec. 2006 2006 - NICE. Physical activity and the environment: Review Five: Building Design. NICE Public Health Collaborating Centre - Physical activity. Jan. 2007 2007 - 23. Colditz GA, Samplin-Salgado M, Ryan CT, et al. Harvard report on cancer prevention, volume 5: fulfilling the potential for cancer prevention: policy approaches. Cancer Causes Control. Apr; 2002 13(3):199–212. [PubMed: 12020101] - 24. IOM. Local Government Actions to Prevent Childhood Obesity. National Academies Press; 2009. - 25. Zaza, S.; Briss, PA.; Harris, KW., editors. The Guide to Community Preventive Services: What Works to Promote Health?. New York: Oxford University Press; 2005. - 26. Dodson EA, Stamatakis KA, Chalifour S, Haire-Joshu D, McBride T, Brownson RC. State legislators' work on public health-related issues: What influences priorities? J Public Health Manag Pract. - Institute of Medicine, Committee on PRevention of Obesity in Children and Youth. Preventing Childhood Obesity: Health in the Balance. Washington, DC: National Academies Press; 2005. - 28. Kersh R, Morone J. How the personal becomes political: prohibitions, public health, and obesity. Studies in American Political Development. 2002; 16(02):162–175. - 29. Economos CD, Brownson RC, DeAngelis MA, et al. What lessons have been learned from other attempts to guide social change? Nutr Rev. Mar; 2001 59(3 Pt 2):S40–56. discussion S57–65. [PubMed: 11360889] 30. Healthiest and Least Healthy Counties Ranked in Every State 2012 County Health Rankings Show What Influences How Healthy Residents Are, How Long They Live. Madison, WI and Princeton, NJ: 2012. - 31. Centers for Disease Control and Prevention. [Accessed 12/13/2012] National Diabetes Surveillance System. http://apps.nccd.cdc.gov/DDTSTRS/default.aspx - 32. New Yorkers oppose fat-tax 2-1, Quinnipiac University poll finds; but split on tax if money is promised for health care. Vol. 2010. Hamden, CT: Quinnipiac University Polling Institute; Apr 14. 2010 - 33. Where America stands: fighting obesity, December 17 22, 2009 January 7, 2010 2011. - 34. DiCamillo, M.; Field, M. Increasing concern among California voters about childhood obesity. Support for policies aimed at encouraging greater physical activity and healthier eating among children, Release #2367. Vol. 2011. San Francisco, CA: Field Research Corporation; Feb 8. 2011 Tuesday - 35. Kolbo, JR.; Harbaugh, B.; Anderson-Lewis, C.; Zhang, L.; Lee, J.; Sasser, T. What Do Mississippians Think About Childhood Obesity? Findings from the 2006 Mississippi Public Perception of Childhood Obesity Survey. Vol. 2006. The Center for Mississippi Health Policy; Dec 22. 2006 - 36. Green LW. Making research relevant: if it is an evidence-based practice, where's the practice-based evidence? Fam Pract. Dec; 2008 25(Suppl 1):i20–24. [PubMed: 18794201] - 37. Institute of Medicine. Accelerating Progress in Obesity Prevention: Solving the Weight of the Nation. Washington, DC: Institute of Medicine of The National Academies; 2012. - 38. Wakefield MA, Loken B, Hornik RC. Use of mass media campaigns to change health behaviour. The Lancet. 2010; 376(9748):1261–1271. Tabak et al. Demographic characteristics of the sample by obesity level of the county of residence in a 2011 Mississippi telephone survey Table 1 | Variable | Categories | Frequency | Percent | Frequency | Percent | Frequency | Percent | |-------------------------|-----------------------------------------------------------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------| | | Caucasian | 1432 | 51.1 | 340 | 24.3 | 1092 | 6.77 | | Race | African American | 1263 | 45.1 | 1019 | 72.8 | 244 | 17.4 | | | Other | 105 | 3.7 | 40 | 2.9 | 92 | 4.6 | | | Married | 1311 | 46.8 | 522 | 37.3 | 68L | 56.3 | | | Unmarried couple | 42 | 1.5 | 20 | 1.4 | 22 | 1.6 | | | Divorced | 292 | 10.4 | 161 | 11.5 | 131 | 9.3 | | Marital Status | Widowed | 446 | 15.9 | 225 | 16.1 | 221 | 15.8 | | | Separated | 73 | 2.6 | 46 | 3.3 | 27 | 1.9 | | | Single | 909 | 21.6 | 403 | 28.8 | 203 | 14.5 | | | Refused | 30 | 1.1 | 22 | 1.6 | ∞ | 9.0 | | T-1 | <high school<="" td=""><td>422</td><td>15.3</td><td>271</td><td>19.7</td><td>151</td><td>10.9</td></high> | 422 | 15.3 | 271 | 19.7 | 151 | 10.9 | | Education | High school or GED | 868 | 32.5 | 490 | 35.6 | 408 | 29.5 | | 70 | Some College/Tech | 693 | 25.1 | 314 | 22.8 | 379 | 27.4 | | Missing = 40 | College+ | 747 | 27.1 | 301 | 21.9 | 446 | 32.2 | | | <\$15,000 | 576 | 32.7 | 401 | 45.3 | 175 | 19.9 | | 117 | \$15-\$24,999 | 336 | 19.1 | 187 | 21.1 | 149 | 17.0 | | Annual Housenoid Income | \$25-\$34,999 | 168 | 9.5 | 77 | 8.7 | 91 | 10.4 | | | \$35-\$49,999 | 234 | 13.3 | 81 | 9.1 | 153 | 17.4 | | Missing = 1038 | \$50-\$74,999 | 202 | 11.5 | 80 | 0.6 | 122 | 13.9 | | | \$75,000+ | 246 | 14.0 | 59 | 6.7 | 187 | 21.3 | | # Child in home | 0 Child | 1897 | 68.3 | 668 | 65.0 | 866 | 71.7 | | Missing = 24 | 1+ Child | 628 | 31.7 | 485 | 35.0 | 394 | 28.3 | | :
- | High | 1399 | 50.0 | 1 | | ı | , | | County Obesity | , | , | 0 | | | | | Page 10 Tabak et al. | | | Total | al | High Obesity County | y County | Low Obesity County | y County | |------------------|----------------------|-----------|---------|---------------------|----------|--------------------|----------| | Variable | Categories | Frequency | Percent | Frequency | Percent | Frequency | Percent | | b | Male | 800 | 28.6 | 357 | 25.5 | 443 | 31.6 | | Cender | Female | 2000 | 71.4 | 1042 | 74.5 | 856 | 68.4 | | | 18–24yrs | 182 | 9.9 | 101 | 7.3 | 81 | 5.9 | | Age | 25-34yrs | 265 | 9.6 | 149 | 10.8 | 116 | 8.4 | | | 35-44yrs | 322 | 11.7 | 164 | 11.8 | 158 | 11.5 | | Missing $= 39$ | 45–54yrs | 512 | 18.4 | 278 | 20.1 | 234 | 17.0 | | | 55-64yrs | 809 | 22.0 | 308 | 22.2 | 300 | 21.8 | | | 65+yrs | 872 | 31.6 | 384 | 27.7 | 488 | 35.4 | | | Underweight (18.5) | 63 | 2.2 | 31 | 2.2 | 32 | 2.28 | | DAGE 0 (2) | Normal (18.5-24.9) | 762 | 27.2 | 303 | 21.7 | 459 | 32.8 | | BIVII (Kg/III") | Overweight (25–24.9) | 839 | 30.0 | 421 | 30.1 | 418 | 29.8 | | | Obese (30) | 1136 | 40.6 | 644 | 46.0 | 492 | 35.1 | | Fruit/Veg Intake | < 5 servings/day | 2490 | 90.3 | 1253 | 91.0 | 1237 | 9.68 | | Missing = 43 | 5+ servings/day | 267 | 6.7 | 124 | 0.6 | 143 | 10.4 | Note: data were collected cross-sectionally Page 11 **Author Manuscript** **Author Manuscript** Table 2 Percent of Mississippians strongly or somewhat supporting each policy by race, county obesity, and gender in a 2011 Mississippi telephone survey | | | | | Race | | | Col | County Obesity | esity | | Gender | | |-------------------------------|------------------------|-------|-----------|------------------|-------|------|------|----------------|--------|------|--------|------| | | Policy | Total | Caucasian | African American | Other | d | High | Low | d | Male | Female | Ь | | | Req 30 min PA k-12 | 92.8 | 6.06 | 95.1 | 92.5 | <.01 | 94.2 | 91.5 | 0.0062 | 88.7 | 94.5 | <.01 | | | Health in curric | 91.3 | 68 | 93.7 | 92.2 | <.01 | 92.8 | 2.68 | 0.0046 | 87.3 | 92.8 | <.01 | | | Healthy school lunch | 88.2 | 85.9 | 91.0 | 85.2 | <.01 | 06 | 86.5 | 0.0048 | 84.8 | 9.68 | <.01 | | In favor of* | Elem no vend | 74.1 | 73.6 | 74.7 | 72.3 | 0.78 | 72.6 | 75.5 | 0.0931 | 69.5 | 75.9 | <.01 | | | Ban SSB in school | 70.1 | 67.4 | 73.2 | 69.4 | 0.01 | 71 | 69.1 | 0.2977 | 66.3 | 71.6 | <.01 | | | Req BMI card | 0.89 | 8.65 | 6.77 | 09 | <.01 | 75 | 61.1 | <.0001 | 62.9 | 8.89 | 0.16 | | | Prohib adv in schools | 66.2 | 62.9 | 67.2 | 58.1 | 0.22 | 6.99 | 9.59 | 0.4908 | 62.9 | 67.5 | 0.02 | | | Tax soda to fight ob | 9.06 | 85.9 | 95.9 | 8.06 | <.01 | 92.5 | 88.8 | 0.0012 | 87.5 | 91.9 | <.01 | | In favor of † | Funding for rec and PA | 80.3 | 74.7 | 87 | 72.9 | <.01 | 81.1 | 9.62 | 0.3344 | 80.7 | 80.2 | 0.78 | | | School gyms open | 64.7 | 54.8 | 76.3 | 60.7 | <.01 | 72.4 | 57.2 | <.0001 | 59.4 | 8.99 | <.01 | | | Walking trails | 85.7 | 79.1 | 93.8 | 74.4 | <.01 | 88.5 | 82.9 | <.0001 | 84.3 | 86.3 | 0.18 | | - | Swimming pools | 87.8 | 7.77 | 88.9 | 77.4 | <.01 | 84.1 | 81.4 | 0.0642 | 80 | 83.9 | 0.02 | | Spend local government tunds≁ | Recreation centers | 82.3 | 77.6 | 87.6 | 82.1 | <.01 | 82.9 | 81.7 | 0.4106 | 80.1 | 83.2 | 0.05 | | | Bicycle paths | 74.5 | 66.5 | 83.5 | 72.9 | <.01 | 77.8 | 71.2 | 0.0001 | 73.6 | 74.9 | 0.50 | | | | | | | | | | | | | | | ^{*}Would you favor or oppose a new law: Requiring at least 30 minutes of physical activity or physical education classes every day for children in kindergarten through 12th grade. Note: data were collected cross-sectionally [†] For each one, please tell me whether you would favor or oppose it: Taxing soda and soft drinks and using the money for public education campaigns to fight obesity in children. [‡]Do you think local government funds should be spent to build and maintain places in your community where people can exercise, such as: Walking trails Tabak et al. Page 13 Table 3 Odds of supporting PA and healthy eating policies by demographic characteristics in a 2011 Mississippi telephone survey | | | Crude OR | Crude OR (95% CI) | Adjusted* (| Adjusted* OR (95% CI) | |------------------------|--|-----------------------|-------------------|------------------|----------------------------| | Variables | Categories | New Laws [†] | Local Funding* | New Laws† | Local Funding [‡] | | | Male | 1.00 | 1.00 | 1.00 | 1.00 | | Celluler | Female | 1.69 (1.28–2.24) | 1.30 (1.06–1.60) | 1.42 (0.98–2.06) | 1.39 (1.04–1.85) | | | Caucasian | 1.00 | 1.00 | 1.00 | 1.00 | | Race | African American | 3.29 (2.41–4.49) | 2.66 (2.14–3.30) | 4.18 (2.48–7.05) | 2.84 (1.95–4.15) | | | Other | 1.36 (0.66–2.79) | 1.11 (0.66–1.87) | 2.44 (0.73–8.16) | 0.84 (0.39–1.84) | | | 18–24yrs | 1.21 (0.68–2.16) | 2.66 (1.67–4.24) | 0.96 (0.41–2.27) | 1.54 (0.78–3.05) | | | 25–34yrs | 1.56 (0.91–2.66) | 3.32 (2.17–5.06) | 1.22 (0.58–2.56) | 2.97 (1.51–5.84) | | \(\frac{1}{2}\) | 35–44yrs | 1.42 (0.88–2.29) | 3.76 (2.48–5.69) | 1.28 (0.64–2.55) | 2.18 (1.22–3.88) | | Age | 45–54yrs | 1.25 (0.84–1.86) | 2.11 (1.58–2.82) | 1.38 (0.78–2.42) | 1.63 (1.07–2.48) | | | 55–64yrs | 1.13 (0.77–1.64) | 1.61 (1.24–2.08) | 1.07 (0.66–1.75) | 1.05 (0.74–1.49) | | | 65+yrs | 1.00 | 1.00 | 1.00 | 1.00 | | | <\$15,000 | 2.78 (1.69–4.58) | 1.57 (1.05–2.37) | 1.48 (0.80–2.71) | 1.34 (0.82–2.21) | | | \$15-\$24,999 | 3.42 (1.84–6.35) | 1.50 (0.95–2.36) | 2.32 (1.19–4.52) | 1.46 (0.89–2.39) | | omood Household Leaner | \$25-\$34,999 | 1.66 (0.87–3.16) | 1.36 (0.79–2.32) | 1.30 (0.65–2.60) | 1.46 (0.83–2.60) | | Amuda nousenoid meome | \$35-\$49,999 | 1.63 (0.93–2.86) | 1.07 (0.67–1.71) | 1.53 (0.85–2.75) | 1.13 (0.70–1.84) | | | \$50-\$74,999 | 1.43 (0.81–2.55) | 1.20 (0.73–1.97) | 1.37 (0.76–2.48) | 1.25 (0.75–2.09) | | | \$75,000+ | 1.00 | 1.00 | 1.00 | 1.00 | | # Child in home | 0 Child | 1.00 | 1.00 | 1.00 | 1.00 | | | 1+ Child | 1.18 (0.89–1.58) | 1.94 (1.53–2.44) | 0.90 (0.58–1.39) | 1.23 (0.86–1.75) | | County | High | 1.94 (1.47–2.57) | 1.31 (1.08–1.60) | 1.14 (0.73–1.77) | 0.83 (0.60–1.15) | | Obesity | Low | 1.00 | 1.00 | 1.00 | 1.00 | | | <high school<="" td=""><td>1.79 (1.08–2.97)</td><td>1.11 (0.80–1.54)</td><td>1.31 (0.64–2.71)</td><td>0.91 (0.54–1.52)</td></high> | 1.79 (1.08–2.97) | 1.11 (0.80–1.54) | 1.31 (0.64–2.71) | 0.91 (0.54–1.52) | | Education | High school or GED | 1.11 (0.79–1.56) | 1.07 (0.83–1.38) | 0.93 (0.57–1.53) | 0.72 (0.48–1.06) | Tabak et al. | | | Crude OR (95% CI) | (95% CI) | Adjusted* C | Adjusted* OR (95% CI) | |--------------|--|-------------------|---|-----------------------|----------------------------| | Variables | Categories | New Laws† | New Laws [†] Local Funding [‡] New Laws [†] Local Funding [‡] | New Laws [†] | Local Funding [‡] | | | Some College/Tech 1.04 (0.73–1.49) 0.89 (0.68–1.16) 0.92 (0.58–1.46) 0.77 (0.52–1.13) | 1.04 (0.73–1.49) | 0.89 (0.68–1.16) | 0.92 (0.58–1.46) | 0.77 (0.52–1.13) | | | College+ | 1.00 | 1.00 | 1.00 | 1.00 | | | Underweight (18.5) 1.47 (0.44-4.95) 0.86 (0.45-1.65) 0.73 (0.20-2.67) 1.97 (0.57-6.73) | 1.47 (0.44–4.95) | 0.86 (0.45–1.65) | 0.73 (0.20–2.67) | 1.97 (0.57–6.73) | | 6 - 5 15 16 | Normal (18.5-24.9) | 1.00 | 1.00 | 1.00 | 1.00 | | BIMI (kg/m²) | Overweight (25–24.9) 0.89 (0.63–1.24) 0.88 (0.68–1.12) 0.79 (0.50–1.24) 0.85 (0.60–1.21) | 0.89 (0.63–1.24) | 0.88 (0.68-1.12) | 0.79 (0.50–1.24) | 0.85 (0.60–1.21) | | | Obese (30) | 1.39 (0.99–1.96) | 1.39 (0.99–1.96) 1.33 (1.04–1.71) 1.24 (0.79–1.96) 1.30 (0.91–1.84) | 1.24 (0.79–1.96) | 1.30 (0.91-1.84) | * Adjusted for all other variables; Page 14 $^{^{\}dagger}$ Would you favor or oppose a new law: Requiring... (some of 10 questions); [‡]Do you think local government funds should be spent to build...(some of 4 questions); data were collected cross-sectionally